Tianlong Chen 1Yi Shen 1,*Li Lin 1Huiyun Lin 1[ ... ]Buhong Li 1,4,**
Author Affiliations
Abstract
1 MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, P. R. China
2 Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, P. R. China
3 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
4 School of Physics and OptoElectronic Engineering, Hainan University, Haikou 570228, P. R. China
Photodynamic therapy (PDT) has been increasingly used in the clinical treatment of neoplastic, inflammatory and infectious skin diseases. However, the generation of reactive oxygen species (ROS) may induce undesired side effects in normal tissue surrounding the treatment lesion, which is a big challenge for the clinical application of PDT. To date, (–)-Epigallocatechin gallate (EGCG) has been widely proposed as an antiangiogenic and antitumor agent for the protection of normal tissue from ROS-mediated oxidative damage. This study evaluates the regulation ability of EGCG for photodynamic damage of blood vessels during hematoporphyrin monomethyl ether (Hemoporfin)-mediated PDT. The quenching rate constants of EGCG for the triplet-state Hemoporfin and photosensitized 1O2 generation are determined to be 6.8×108 M?1S?1 and 1.5×108 M?1S?1, respectively. The vasoconstriction of blood vessels in the protected region treated with EGCG hydrogel after PDT is lower than that of the control region treated with pure hydrogel, suggesting an efficiently reduced photodamage of Hemoporfin for blood vessels treated with EGCG. This study indicates that EGCG is an efficient quencher for triplet-state Hemoporfin and 1O2, and EGCG could be potentially used to reduce the undesired photodamage of normal tissue in clinical PDT.
(–)-Epigallocatechin gallate (EGCG) photodynamic therapy hemoporfin singlet oxygen blood vessel vasoconstriction 
Journal of Innovative Optical Health Sciences
2024, 17(3): 2450002
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
2 Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350013, P. R. China
Singlet oxygen (1O2) is the main cytotoxic substance in Type II photodynamic therapy (PDT). The luminescence of 1O2 at 1270nm is extremely weak with a low quantum yield, making the direct detection of 1O2 at 1270nm very challenging. In this study, a set of highly sensitive optical fiber detection system is built up to detect the luminescence of photosensitized 1O2. We use this system to test the luminescence characteristics of 1O2 in pig skin tissue ex vivo and mouse auricle skin in vivo. The experimental results show that the designed system can quantitatively detect photosensitized 1O2 luminescence. The 1O2 luminescence signal at 1270nm is successfully detected in pig skin ex vivo. Compared with RB in an aqueous solution, the lifetime of 1O2 increases to 17.4±1.2μs in pig skin tissue ex vivo. Experiments on living mice suggest that an enhancement of 1O2 intensity with the increase of the TMPyP concentration. When the dose is 25mg/kg, the vasoconstriction can reach more than 80%. The results of this study hold the potential application for clinical PDT dose monitoring using an optical fiber detection system.Singlet oxygen (1O2) is the main cytotoxic substance in Type II photodynamic therapy (PDT). The luminescence of 1O2 at 1270nm is extremely weak with a low quantum yield, making the direct detection of 1O2 at 1270nm very challenging. In this study, a set of highly sensitive optical fiber detection system is built up to detect the luminescence of photosensitized 1O2. We use this system to test the luminescence characteristics of 1O2 in pig skin tissue ex vivo and mouse auricle skin in vivo. The experimental results show that the designed system can quantitatively detect photosensitized 1O2 luminescence. The 1O2 luminescence signal at 1270nm is successfully detected in pig skin ex vivo. Compared with RB in an aqueous solution, the lifetime of 1O2 increases to 17.4±1.2μs in pig skin tissue ex vivo. Experiments on living mice suggest that an enhancement of 1O2 intensity with the increase of the TMPyP concentration. When the dose is 25mg/kg, the vasoconstriction can reach more than 80%. The results of this study hold the potential application for clinical PDT dose monitoring using an optical fiber detection system.
Singlet oxygen photodynamic therapy optical fiber detection system vasoconstriction 
Journal of Innovative Optical Health Sciences
2022, 15(6): 2240011
Author Affiliations
Abstract
1 Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, Jiangsu 211816, P. R. China
2 School of Physical Science and Information Technology, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
3 MOE Key Laboratory of OptoElectronic Science and Technology for Medicine Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, P. R. China
4 School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
Metal- and metal-oxide-based nanoparticles have been widely exploited in cancer photodynamic therapy (PDT). Among these materials, cerium-based nanoparticles have drawn extensive attention due to their superior biosafety and distinctive physicochemical properties, especially the reversible transition between the valence states of Ce(III) and Ce(IV). In this review, the recent advances in the use of cerium-based nanoparticles as novel photosensitizers for cancer PDT are discussed, and the activation mechanisms for electron transfer to generate singlet oxygen are presented. In addition, the types of cerium-based nanoparticles used for PDT of cancer are summarized. Finally, the challenges and prospects of clinical translations of cerium-based nanoparticles are briefly addressed.Metal- and metal-oxide-based nanoparticles have been widely exploited in cancer photodynamic therapy (PDT). Among these materials, cerium-based nanoparticles have drawn extensive attention due to their superior biosafety and distinctive physicochemical properties, especially the reversible transition between the valence states of Ce(III) and Ce(IV). In this review, the recent advances in the use of cerium-based nanoparticles as novel photosensitizers for cancer PDT are discussed, and the activation mechanisms for electron transfer to generate singlet oxygen are presented. In addition, the types of cerium-based nanoparticles used for PDT of cancer are summarized. Finally, the challenges and prospects of clinical translations of cerium-based nanoparticles are briefly addressed.
Photodynamic therapy photosensitizer cerium reactive oxygen species 
Journal of Innovative Optical Health Sciences
2022, 15(6): 2230009
Author Affiliations
Abstract
1 School of Science, Hainan University, Haikou 570228, P. R. China
2 Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, Toronto M5G 2M9, Canada
Journal of Innovative Optical Health Sciences
2022, 15(6): 2202003
李步洪 1,*陈天龙 1林立 1陈兵 2[ ... ]顾瑛 3
作者单位
摘要
1 福建师范大学医学光电科学与技术教育部重点实验室,福建省光子技术重点实验室,福建 福州 350117
2 福州图鑫光电有限公司,福建 福州 350007
3 解放军总医院第一医学中心激光医学科,北京 100039
光动力疗法(PDT)是一种综合利用光敏剂、光和氧分子,通过光动力反应选择性地治疗恶性肿瘤、血管性病变和微生物感染等疾病的新型疗法。PDT作为光治疗的一种重要方法,已逐渐成为继手术、放疗和化疗之后治疗肿瘤的第四种微创疗法,同时还是治疗鲜红斑痣等特殊疾病的首选疗法。本文简要回顾PDT的研究现状;以提高PDT疗效为目标,重点分析光敏剂、光源、组织氧含量、协同治疗、量效评估等基础研究以及临床应用的研究进展;讨论临床个性化精准PDT及其推广应用所面临的挑战和发展方向。
生物光学 光动力疗法 光敏剂 光源 氧含量 协同治疗 剂量 临床应用 
中国激光
2022, 49(5): 0507101
作者单位
摘要
1 福建师范大学医学光电科学与技术教育部重点实验室,福建省光子技术重点实验室,福建 福州 350007
2 解放军总医院第一医学中心激光医学科,北京 100853

自动量化评估小鼠脊背皮窗血管损伤对于血管靶向光动力疗法(V-PDT)的个性化精准治疗研究具有重要意义。V-PDT治疗过程中,受小鼠呼吸、心跳和不自主运动等因素影响,小鼠脊背皮窗窄带光血管图像会发生不同程度的非刚性形变,从而引起血管损伤量化误差。结合基于特征和灰度配准方法的优点,提出了一种判断式图像混合配准算法。首先基于配准组别图像均方差值(MSD)区分剧烈形变和轻微形变。对于轻微形变,直接采用微分同胚Demons(Log-Demons)算法进行配准;对于剧烈形变,先采用speeded up robust features thin-plate splines(SURF-TPS)算法进行全局配准,随后采用Log-Demons算法进行局部配准。实验结果表明,与SURF-TPS、Log-Demons及SURF-TPS+Log-Demons算法相比,所提算法既有最优的配准精度,又有较高的时间处理效率,而且能有效校正剧烈形变所导致的血管损伤评估误差。

医用光学 光动力治疗 窄带光血管图像 图像配准 图像形变 
激光与光电子学进展
2022, 59(6): 0617020
作者单位
摘要
福建师范大学, 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福州 350007
随着医疗光电产品的升级, 人们对便携式医疗设备和全天候监测医学传感器的需求日益增大。得益于有机电致发光二极管(OLED)的柔性、可拉伸、轻薄、均匀辐照和贴合皮肤表面等优点, 其正成为可穿戴式生物医学设备的新型光源。本文详细介绍了OLED在光动力疗法、光电容积脉搏监测、光吸收式血氧监测、光遗传学和光生物调制等领域的应用进展, 充分展示了OLED在医疗光电产品中的应用潜力。为了满足临床应用对光源的需求, 提高OLED发光功率及延长其寿命是未来的重要发展方向。
有机电致发光二极管 光动力疗法 脉搏血氧仪 光遗传学 光生物调制 organic light-emitting diode photodynamic therapy pulse oximeter optogenetics photobiomodulation 
激光生物学报
2021, 30(3): 193
作者单位
摘要
福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
光动力疗法(PDT)是一种联合利用光敏剂、光和氧分子,通过光动力反应选择性治疗恶性肿瘤和良性疾病的微创疗法。光源作为PDT的三大关键要素之一,其发光波长、照光方式以及剂量直接决定PDT疗效。针对临床治疗对光源的性能需求,探讨了发光二极管(LED)作为PDT光源的技术优势。深入介绍了LED阵列光源,以及用于发展可穿戴式、可植入式新型PDT光源的有机LED、量子点LED和无线驱动LED的研究进展。全面总结了LED在离体细胞、活体动物以及临床PDT等方面的应用现状。研发波长可切换的多波长LED并实现照光区域和剂量的实时调控是未来智能个性化PDT光源的发展趋势。
医用光学 光动力治疗 光源 发光二极管 精准 个性化 
激光与光电子学进展
2020, 57(15): 150001
作者单位
摘要
福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
光动力疗法(PDT)作为选择性治疗恶性肿瘤和良性疾病的精准靶向疗法,已获得了广泛的临床应用。如何利用先进的光学成像技术实现对PDT剂量的实时监测,是开展PDT个性化精准治疗的理论基础。本文介绍了PDT治疗过程中光敏剂、氧、单线态氧以及血管响应等所需监测的4个重要参量,重点总结了用于实时监测PDT参量的光学成像技术,并比较分析了这些技术的优势和局限性,最后讨论了光学成像技术在PDT临床转化应用中面临的挑战。
医用光学 光动力疗法 光学成像 剂量 监测 临床应用 
中国激光
2020, 47(2): 0207006
作者单位
摘要
1 福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州350007
2 中国人民解放军总医院激光医学科, 北京 100853
3 多伦多大学, 生物物理与成像研究部, 玛格丽特癌症研究所, 大学大道610, 多伦多M5G 2M9, 加拿大
光动力疗法(PDT)是一种联合利用治疗光源、光敏剂和氧分子, 选择性治疗恶性肿瘤和良性疾病的精准靶向疗法。光源作为PDT治疗的关键要素之一, 其发光波长、照光方式和剂量直接影响疗效。本文详细介绍了太阳光、近红外光、X射线、在体发光和发光二极管等5种PDT光源的研究新进展, 并分析了这五种治疗光源在生物组织穿透深度上的不同特性以及所存在的不足。随后, 重点讨论了以提高PDT治疗精度为目标的体表照光和体内照光等两种个性化照光模式。研发操作简便、价格低廉、性能优异的新型PDT光源是未来的发展方向。
光动力疗法 光源 组织光学 近红外光 X射线 发光二极管 photodynamic therapy light tissue optics near infrared light X-ray light emitting diode 
激光生物学报
2019, 28(2): 97

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!